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Imagine you want to test whether men have better eyesight than women. You administer a vision 
test to all the students in BIOL 300 by showing each student the same sequence of 100 small 
letters from 20 feet away, asking the student to identify each letter, and recording how many 
correct responses each student gives. When you have tested all the students in the class and 
calculated the average number of correct responses for men and women, you get the following 
result: on average, female students got 80 letters correct, while male students got 75 letters 
correct. 

Are you confident that this difference is evidence that women have better visual acuity 
than men? How certain are you that this difference is not due to chance? To what degree can you 
be confident that this difference generalizes to all men and women, not just those in BIOL 300? 
These questions are faced by all research scientists and have led to the generation of statistical 
techniques to evaluate scientific results, and a set of accepted conventions on the correct way to 
interpret these results. This guide will introduce you to some basic statistical concepts that will 
allow you to interpret your data from BIOL 300 and have a better understanding of the statistical 
details you read in the primary biological literature. 

 
Statistical hypothesis testing 
Scientists first generate hypotheses to describe the possible outcomes of their study. In modern 
science, hypotheses must be evaluated with respect to a null hypothesis (H0), which describes 
the default outcome if there is no experimental effect. For example, a null hypothesis might state 
that there is no relationship between two variables, or that groups being evaluated have the same 
average value of some variable. In our hypothetical experiment, the null hypothesis is that men 
and women have the same visual acuity; that is, men and women on average will get the same 
number of letters correct on our vision test. The alternative hypothesis (Ha) asserts that there is 
a relationship between variables, or a difference between groups. The possibility that the 
alternative hypothesis is true may be suggested by other observations or previous research and is 
generally what motivates a researcher to undertake an experiment. In our hypothetical 
experiment, the alternative hypothesis is that men and women have different visual acuity; that is, 
men and women will differ in the number of letters they get correct on our vision test. 

 
Factors affecting hypothesis tests 
Once data have been gathered from a study, statistical tests of significance can be performed to 
assess the level of support for the alternative hypothesis. There are many such tests, but they 
are all affected mainly by three factors: 

 
1) As the magnitude of the effect predicted by the alternative hypothesis gets larger, our 
confidence in the alternative hypothesis increases. For example, our confidence that women 
have better visual acuity than men would be greater if we observed a 20--‐point average 
difference in their performance (e.g., 80 correct responses on average for women vs. 60 
correct responses on average for men) than if we observed a 5--‐point average difference in 
their performance (80 correct responses on average for women vs. 75 correct responses on 
average for men). 

 
2) For any given effect magnitude, as the variance of the data gets smaller, our confidence 



in the alternative hypothesis increases. Variance refers to the variability of the data, such as 
how spread out the individual data points are around the average value. For example, if all 
the visual acuity test results fell within a narrow range with no overlap between sexes (e.g., 
all the women scored between 78 and 82, while all the men scored between 73 and 77), our 
confidence in an observed 5--‐point average difference between women and men would be 
much greater than if there was the same 5-point difference between the averages, but the 
results were more variable and broadly overlapping between the two sexes (e.g., all the 
women scored between 68 and 92, and all the men scored between 63 and 87). 

 
3) As the number of observations (often called sample size and abbreviated as N) gets 
larger, our confidence in the alternative hypothesis increases. For example, if we tested 100 
men and 100 women, our confidence in an observed 5--‐point average difference between 
women and men would be greater than if we observed the same 5--‐point average difference 
in a sample of only 10 men and 10 women. 

 
Intuitively, we often focus only on the magnitude of a difference when assessing a pattern (i.e., 
women on average scored 5 points higher on the visual acuity test than men). However, 
statistically, we need to know something about the spread of the data and the number of 
observations to conduct a formal test of significance. The p values assigned to the outcome of 
statistical tests depend both on the value of some specific test statistic (different for each test) 
and on the degrees of freedom (d.f.) of the test, which is closely related to the number of 
observations. The p value represents our level of confidence in the null hypothesis: the lower the 
p value, the more confident we are that the null hypothesis is wrong and, thus, the more evidence 
we have in favor of the alternative hypothesis. 

 
Statistical significance 
Below a certain p value, a test is deemed statistically significant. This means we are confident 
that our results are not due to chance, and therefore will reject the null hypothesis and treat our 
results as evidence in favor of the alternative hypothesis. In the life sciences, this threshold value 
of p (called alpha) is typically set to 0.05 (5%) by convention. Assuming that all of the 
assumptions of the test used are met, we should have a false positive (rejecting the null 
hypothesis when it is really true) only 5% of the time. In other words, we have at least 95% 
confidence in our rejection of the null hypothesis. If a p value is higher than 0.05 the test is not 
considered statistically significant, meaning we fail to reject the null hypothesis. In these cases 
we do not consider our test as evidence in favor of the alternative hypothesis, because the chance 
of a false positive is too high (>5%). 

 
Performing statistical tests 
There are several free, online statistical packages that can perform many commonly used 
statistical tests (such as a t test). Vassar College provides a good, free online package called 
VassarStats at http://faculty.vassar.edu/lowry/VassarStats.html. For example, you can perform a 
t test on VassarStats by clicking on “t--‐Tests &Procedures”, then “Two--‐Sample t--‐Test for 
Independent or Correlated Samples”. Click the “Independent Samples” button at the top of the 
page, follow the instructions to import your data, and click the “Calculate” button. The table 
labeled “Results” will now display the t statistic (under “t”), the test degrees of freedom (under 
“df”), and the p value of the test (next to “P”, in the “two--‐tailed” box). 
 



Test reporting 
 
t-tests 
t statistic, degrees of freedom as a subscript, and p-value. Treatment means ± a measure of 
variability like SEM or 95% CI are often reported as well, if there are only a few treatments. 
  

Larval survivorship over 24 hours did not differ between subcolony pairs of young and old workers (paired 
t test: t11 = 0.321, P = 0.754). Larval survivorship was consistently high, with all 10 larvae surviving the 
duration of most trials and no fewer than 8 larvae surviving in all cases. Larvae tended by old workers, 
however, gained significantly more mass than larvae tended by young workers (Fig. 1a; old > young: 11/12 
subcolony pairs), whether measured on an aggregate (t11 = 3.624, P = 0.004) or per capita basis (t11 = 3.313, 
P = 0.007). Over 24 hours, the mass gain of larvae tended by old workers (X ± SE) was 20.1 ± 6.34%, (733 
± 215 µg) and larvae lost mass in only 1 of 12 trials. The average mass gain of larvae tended by young 
workers was only 2.58 ± 2.49%, (41.7 ± 102 µg) and larvae lost mass in 6 of 12 trials. 

 
One-way (aka one-factor) ANOVA 
F statistic, degrees of freedom as a subscript1, and p-value. Treatment means are usually not 
reported in the text for ANOVA’s, because there are always ≥3 treatments and trying to list them 
all out in paragraph form would be difficult. In fact ANOVA’s are a good example of a test that 
is really much more easily described in a figure than in words. 
 
Among mature workers, which we assume have completed most or all neural development, brain volume relative to 
body size (estimated as 2×half central brain volume/head width) differed significantly among worker groups (Figure 
6; ANOVA: F5,54 = 39.3, p<0.0001).  
 
linear regression 
t or F statistic (depends on the program used to calculate the regression – VassarStat uses the t 
statistic), degrees of freedom as a subscript (one number for t, two for F1), p-value, and R2 value. 
The t or F statistic and associated p-value assess the significance of the relationship; the R2 value 
assesses the strength of the relationship (how variable are the individual points around the 
regression line). 
 

Slow MC fibers were estimated to attain maximum thickness in minors (as indicated by the mean thickness 
of these fibers in AC4s) on approximately day 11 of adult life, based on a linear model of growth over the 
first 3 time points measured (regression: F1,22 = 165, P < 0.0001, R2 = 0.89). 

 
ANCOVA 
ANCOVA’s are similar to ANOVA’s with the inclusion of at least one continuous independent 
variable (often called the “covariate”). They can become quite complicated (like two-way and 
factorial ANOVAs). But a simple ANCOVA that includes one continuous dependent variable, 
one categorical independent variable (the “treatment” variable), and one continuous independent 
variable (covariate) can generally be described by reporting the F statistic, degrees of freedom as 
a subscript1, and p-value for each of the two independent variables. Alternately, an ANCOVA 
can be reported quite economically with a table that presents all the test statistics (see Example 2 
below). 

																																								 																					
1	F statistics have TWO degrees of freedom associated with them (a “treatment” or “between 
groups” df which is usually small, and an “error” df which is generally larger) – the reason is not 
important for our purposes, but they are both listed (in order, separated with a comma) when 
reporting F.	



  
 
Example 12 
Plasma corticosterone levels consistently were at least threefold higher in female lizards than in males (two-
factor ANCOVA with treatment and sex as the factors, SVL as the covariate, and plasma corticosterone 
levels 1 h post stimulus as the dependent variable: sex F[1,188]=139.46, P<0.0001, all interactions non-
significant; Fig. 2A). In contrast, a lizard's body size did not influence its plasma corticosterone levels (two-
factor ANCOVA with treatment and sex as the factors, SVL as the covariate, and plasma corticosterone 
levels 1 h post stimulus as the dependent variable: SVL F[1,188]=0.99, P=0.32, all interactions non-
significant). 
 
Example 23 
[From the Methods] Among mesocosms with ants, we conducted an ANCOVA to determine if the relative 
effect of ant biomass on litter mass loss varied with functional category, using generalist foragers and 
dacetines which were adequately represented for this analysis.  

[From the Results] There was no significant difference in mass lost from mesocosms among ant functional 
categories, in an ANCOVA model with log ant biomass as a covariate (Table 1). 

 

																																								 																					
2 Langlikde & Shine (2006) How much stress do researchers inflict on their study animals? A case 
study using a scincid lizard, Eulamprus heatwolei. Journal of Experimental Biology 209: 1035-
1043. 
3 McGlynn & Piorson (2012) Ants accelerate litter decomposition in a Costa Rican lowland 
tropical rain forest. Journal of Tropical Ecology 28: 437-443. 
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Table 1. Analysis of covariance evaluating the effect of ant mass on
decomposition rate in experimental mesocosms, with ant functional
category as a cofactor.

Source df F P

Whole model 3, 17 2.67 0.081
Log-transformed ant mass in mesocosm 1 5.30 0.03
Ant functional category in mesocosm 2 0.11 0.89

RESULTS

In the mesocosm experiment, the mass lost after 8 wk was
significantly greater in the treatments with ants than the
treatments without ants, as predicted (t40.04 = 2.10; P =
0.042; Nants included = 29; Nants excluded = 20; with ants,
38.9% mass loss ± 2.0% standard error without ants,
23.6% ± 2.5%). Among the mesocosms with ants, there
was no relationship between the number of ant adults and
the mass lost from the mesocosm (R2 = 0.01), though
there was an effect of log ant biomass on mass loss (R2 =
0.311; F1,19 = 8.59; P = 0.009; Figure 1). There was no
significant difference in mass lost from mesocosms among
ant functional categories, in an ANCOVA model with log
ant biomass as a covariate (Table 1).

In the litterbag gradient experiment, the best supported
regression model accounting for decomposition rate
constants in the total arthropod-exclusion treatment
included solely soil C : P (Table 2; Figure 1a). In the partial
arthropod-exclusion treatment, the biomass of ants was
the sole variable in the most-supported model, accounting
for 50% of the variance in decomposition rate constants
(Table 2; Figure 1b).

DISCUSSION

In the mesocosm experiment, we found that ants
increased the decomposition of ambient leaf litter. In this
experiment, the influence of ants was exerted through
biomass; there was no effect of the functional role of
the ants, based on the coarsely defined groups that we
employed. While the role of arthropods in regulating the
decomposition of leaf litter has long been established,
experiments typically have been limited to exclusion
solely through screening or chemical deterrents (Seastedt
1984). By manually subtracting all ants from the
experimental mesocosms, we had an ability to gain insight
into the functional role of ants in the decomposition
process distinct from the rest of the community. The
results of prior arthropod-exclusion experiments in
tropical forests have yielded a set of mixed results
(González & Seastedt 2001); these studies completely or
selectively excluded arthropods without respect to taxon
or functional role (as in the present litterbag gradient
experiment). We suggest that the disparities among

Figure 1. Regression models for decomposition rate constants of leaf
litter across a fertility gradient, in litterbags designed for total arthropod
exclusion (a) and partial arthropod exclusion (b). Panels indicate the
most parsimonious models for decomposition rate constants (Table 2).
Regression for total arthropod exclusion: k = 1.71 − 0.002 Soil C : P;
for partial arthropod exclusion, k = −0.55 − 0.11 log ant biomass;
additional statistics are in Table 2.

prior studies may be explained in part by differences
in the relative abundance of ants and other taxa, and
the differential effects of the various arthropod-exclusion
methods on arthropods with different functional roles in
the litter community.

The litterbag gradient experiment results may be
consistent with the interpretation of the mesocosm
experiment. This experiment was designed so that
an increase in the mesh openings would allow some
arthropods into the litter, based on body size. No


